Problem
Find (a^b)%M, where
a = Nth non-fibonacci number
b = Nth fibonacci number modulo M
M = 1000000007
Consider fibonacci series 1,1,2,3,…..
INPUT
First line contains T , the number of test cases.
Each next T lines contains a number N.
OUTPUT
Print T lines of output where each line corresponds to the required answer.
EXAMPLE
Input:
3
3
2
1
Output:
49
6
4
Constraints
1<=T<=100000
1<=N<=10^7
Here is my code for the problem link
#include <cstdio>
#include <unordered_map>
using namespace std;
typedef long long int ll;
ll M = 1000000007;
ll mulmod(ll a, ll b) //modular multiplication
{
ll x = 0;
ll y = a%M;
while(b>0)
{
if(b%2)
x = (x+y)%M;
y = (y+y)%M;
b/=2;
}
return x%M;
}
ll modulo(ll a, ll b) //modular exponentiation
{
ll x = 1;
ll y = a;
while(b)
{
if(b%2)
x = mulmod(x,y);
y = mulmod(y,y);
b/=2;
}
return x%M;
}
unordered_map<ll,ll> Fib;
ll fibo(ll n) //n+1 th fibonacci number
{
if(n<2)
return 1;
if(Fib.find(n) != Fib.end())
return Fib[n];
Fib[n] = (fibo((n+1) / 2)*fibo(n/2) + fibo((n-1) / 2)*fibo((n-2) / 2)) % M;
return Fib[n];
}
ll nonfibo(ll n) //nth non-fibonacci number
{
ll a = 1, b = 2, c = 3;
while(n>0)
{
a = b;
b = c;
c = a+b;
n-=(c-b-1);
}
n+=(c-b-1);
return n + b;
}
int main()
{
ll t;
scanf("%lld",&t);
while(t--)
{
ll n;
scanf("%lld",&n);
printf("%lldn",modulo(nonfibo(n),fibo(n-1)));
}
return 0;
}
It exceeds the time limit, how do I improve the code?
Solution
Here, you are using modular exponentiation and modular multiplication, which are fast enough.
Your nonfibo
function is also taking only O(lg(n))
time.
But your method for computing nth
fibonacci number is not much efficient. Try using this Linear Recurrence Solving Method.